Development of an acoustic self-locating system for gear marking

Mark Baumgartner Biology Department

Jim Partan Applied Ocean Physics and Engineering Department

Woods Hole Oceanographic Institution

Outline

- Overview of three gear location methods:
 - 1. Surface GPS
 - 2. Ranging (also known as surveying)
 - 3. Successive acoustic receive time (SART) localization
- Development of SART localization, including preliminary field trials
- Pros and cons of gear location methods

Outline

- Overview of three gear location methods:
 - 1. Surface GPS
 - 2. Ranging (also known as surveying)
 - 3. Successive acoustic receive time (SART) localization
- Development of SART localization, including preliminary field trials
- Pros and cons of gear location methods

Outline

- Overview of three gear location methods:
 - 1. Surface GPS
 - 2. Ranging (also known as surveying)
 - 3. Successive acoustic receive time (SART) localization
- Development of SART localization, including preliminary field trials
- Pros and cons of gear location methods

Borrowed some methods from:

IEEE Journal of Oceanic Engineering 33:146-157, 2008

Tracking Large Marine Predators in Three Dimensions: The Real-Time Acoustic Tracking System

Mark F. Baumgartner, Lee Freitag, Member, IEEE, Jim Partan, Keenan R. Ball, and Kenneth E. Prada

Work to date

Simulations

- Worked out the math
- Developed trial software in IDL programming environment
- Converted algorithm to C programming language
- Conducted many simulations to refine and test
- Ported C code to WHOI Micromodem
- Built PC app to control surface modem and display/map data
- Bench tested Micromodem with simulated data

Field tests

- Moored trap modem in Buzzards Bay (14 m depth)
- Attached logging GPS to surface float
- Used ranging facility to estimate position of trap modem at sea floor
- Conducted ship transects away and past the trap modem to estimate position of trap modem at sea floor with SART

WHOI TrapModemSL v1.0

File Transducer Port Cable Port Help				
Serial Number: 0001 -	Transducer Query	Release Ready	Localize	Ping interval (s): 45
Password: ****	Cable Arm	Battery Voltage	Transducer depth (m): 3 End ping	
SMELTS WHOI		Dattery voltage		
rfc modem: 6 Get Set	Inflation period (sec):	Get Set	Water depth (m): 14	Get pingback
lodem messages sent:		Show raw messages	Sand CPS	se GPS for estimation
Sending pingback request to trap modem 1				eset lists 🗆 Simul
Sending ping 2,6,1573487321,4133.0523N,07042.1042W,38,45,0.0000 Sending pingback request to trap modem 1 Sending ping 2,6,1573487368,4133.0031N,07042,1079W,38,45,0.0000			Range View	Clear range
Sending pingback request to tra Sending ping 2,6,157348741	p modem 1 5,4132.9594N,07042.1	366W,38,45,0.0000		Zoom in
٠			•	• Zoom out
Modem messages received:			•	•
PING: gps = 0000.0000N,00000 Trap modem 1 confirms querv/r	0.0000E, z = 14.1 m, go ange command (slant r	ood = 1, #good = 1, ange = 942 feet)	• •	N
RANGE: 4133.0692N,07042.31	89W, zed = 719.2 us, s	s = 1482.6 m/s, z =	•	7 F W
PING: gps = 0000.0000N,00000	• •			
PING: gps = 0000.0000N,00000 PING: gps = 0000.0000N,00000	0.0000E, z = 14.1 m, go 0.0000E, z = 14.1 m, go	$pod = 1, #good = 2, pod = 1, #good = 3, \square$		S
•		4	⊢—– 400 ft	Test msg

Next steps

Just completed first in-water tests in the past week

Using dock and at-sea results, refine algorithm

Test again at sea to verify functionality and evaluate accuracy

Publish methods in a peer-reviewed journal and make the code freely available

Work with interested acoustic modem manufacturers to implement SART localization

Outline

- Overview of three gear location methods:
 - 1. Surface GPS
 - 2. Ranging (also known as surveying)
 - 3. Successive acoustic receive time (SART) localization
- Development of SART localization, including preliminary field trials
- Pros and cons of gear location methods

Surface GPS

Pros

- Relatively easy to implement
- Does not require acoustic capability
- Relatively inexpensive

Cons

- Trap location accuracy can be low when deployed in currents
- Accuracy degrades significantly if trap moves
- Could significantly contribute to ghost gear, since gear that moves a substantial distance from the deployment site cannot be relocated

Ranging

Pros

- More accurate than surface GPS position alone
- Can account for traps that move from their surface deployment location

Cons

- Requires acoustic capability
- Requires trap be surveyed by each ship that wants to know its location
- Requires significant power, since trap modem is transmitting often
- Introduces sound in the water
- Information for localization resides on vessel, not on the trap modem
- Can be abused by a non-owner who constantly ranges to the same trap modem to intentionally run down that device's batteries

SART self-localization

Pros

- More accurate than surface GPS position alone
- Can account for traps that move from their surface deployment location
- Likely as accurate as ranging localization
- Significantly reduces need for trap modem to transmit, thereby reducing power consumption
- Trap location is estimated and stored by the trap modem
- Can't be "abused" by non-owners; trap modem communicates typically only once with passing ships (twice if location certainty changes)

Cons

- Requires acoustic capability
- Requires at least two ship passages for position estimate
- Introduces sound in the water, but attempts to minimize this over ranging localization

Acknowledgements

Assistance:

- John Kemp and Meghan Donahue WHOI Mooring and Engineering Group
- Pete Collins and Leah Saunders R/V Tioga

This work was funded by the WHOI Innovative Technology Program

